ROBERT DYRO

robert.dyro@gmail.com | (310) 694-1753 | https://robertdyro.com

I am deeply committed to advancing the field of autonomous systems and machine learning applications through proven, effective research. My foremost objective is to identify and execute solutions that deliver substantial and meaningful results. I am driven by the pursuit of technical knowledge for real-world applications that push the boundaries of technology.

EDUCATION	
Stanford University	Stanford, CA
PhD in Robotics, GPA 3.93	2020 - present
MS in Aeronautics & Astronautics Engineering, GPA 3.89	2018 - 2020
University of California, Los Angeles	Los Angeles, CA
BS in Aerospace Engineering, Minor in Philosophy, GPA 3.94, Summa Cum Laude	2014 - 2018
RELEVANT COURSEWORK	
Convex Optimization I & II 🛛 Reinforcement Learning 🗖 Meta-Learning 🗖 Large	-scale Matrix Computations
CS 1, 2 & 3 ■ Robot Autonomy ■ Optimal and Learning-based Control ■ Decision Making under U	ncertainty \blacksquare Game Theory
Model Reduction \blacksquare ML with Graphs \blacksquare ML Theory \blacksquare Trustworthy & Explainable ML \blacksquare N	ML under Distribution Shift
EXPERIENCE	
Graduate Student, Autonomous Systems Laboratory (ASL) at Stanford University	Stanford, CA
Stress Testing Autonomous Vehicles via Counterfactual Editing of Trained Behavior Models	2023
- extracting learned behavior distribution for realistic counterfactual generation via efficient and scale	able Hessian sketching
Fast Online Intent Inference in Autonomous Driving	2022
- developed a fast structured parametric behavior inference method for online behavior identification	i in autonomous driving
Second-Order Sensitivity Analysis for Bilevel Optimization	2021
- 2nd order sensitivity analysis of optimization, enabling much faster optimization of bilevel/inverse/	sensitivity problems
Control under Arbitrary Uncertainty using Particle Model Predictive Control	2020
- implemented and experimentally evaluated consensus control particle MPC for control under arbit	rary uncertainty
Convex Last-layer Meta-learning for Behavior & Physics-based Modeling	2019
- incorporated constraints into the meta-learning model for structured learning to allow adding a pri	ori modeling knowledge
PhD Intern, Cruise	San Francisco, CA
Machine Learning Acceleration - Architecture Optimization - Zero-Shot Neural Architecture Search	June - December 2022
Research Intern, Toyota Research Institute	Los Altos, CA
Intelligent Driver Behavior Modeling using Human Interpretable Rules	June - September 2020
- embedded human logic within path planning using Signal Temporal Logic (STL) to capture human	1-interpretable specification
Student Researcher, TANMS at UCLA	Los Angeles, CA
Multi-Physics Dynamics Simulation in Computational Multiferroic Systems	2017
TECHNICAL EXPERIENCE	
Projects:	
- $torch2jax$ - zero-overhead PyTorch computation wrapping for JAX computation graph under JIT and	1 autodifferentiation
- automatic short answer grading (NLP) via meta-learning using BERT and T5 NLP models	

- from scratch realistic quadratic program solver implementation for CUDA optimizations exploration
- fair and robust machine learning via local explainability enforcement exploiting the LIME technique
- experimental dynamic graph autodifferentiation library for full sparse 1st & 2nd order matrix algebra differentiation
- large-scale parametric evaluation of stochastic control algorithms on a high-performance computing (HPC) Slurm cluster
- experimentally evaluated lifted NNs, convex reformulation of deep NNs
- optimal driving and intersection collision avoidance via Monte Carlo Tree Search for partially observable planning
- model-free policy optimization reinforcement learning for drone control
- designed a remote-operated field electrical power system and data acquisition system for student hybrid rocket project
- teaching experience in introduction to computer science for scientific computation (Matlab) & introduction to electronics Software Skills:

advanced project experience in Python, Julia, C++, C, Matlab \blacksquare advanced project experience with JAX, PyTorch, TF, ROS experience with embedded systems, Linux, HPC, Slurm, AWS, Docker, CUDA \blacksquare working knowledge of Fortran, JavaScript

MISC