sensitivity_jax.extras.optimization.lbfgs.minimize_lbfgs(f_fn, g_fn, *args, verbose=False, verbose_prefix='', lr=1.0, max_it=100, full_output=False, callback_fn=None, use_writer=False, use_tqdm=False, state=None)
Minimize a loss function f_fn
with L-BFGS with respect to *args
.
Taken from PyTorch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
f_fn |
Callable
|
loss function |
required |
g_fn |
Callable
|
gradient of the loss function |
required |
*args |
JAXArray
|
arguments to be optimized |
()
|
verbose |
bool
|
whether to print output |
False
|
verbose_prefix |
str
|
prefix to append to verbose output, e.g. indentation |
''
|
lr |
float
|
learning rate, where 1.0 is unstable, use 1e-1 in most cases |
1.0
|
max_it |
int
|
maximum number of iterates |
100
|
full_output |
bool
|
whether to output optimization history |
False
|
callback_fn |
Callable
|
callback function of the form |
None
|
use_writer |
bool
|
whether to use tensorflow's Summary Writer (via PyTorch) |
False
|
use_tqdm |
Union[bool, tqdm_module.std.tqdm, tqdm_module.notebook.tqdm_notebook]
|
whether to use tqdm (to estimate total runtime) |
False
|
Returns:
Type | Description |
---|---|
Optimized |
Source code in sensitivity_jax/extras/optimization/lbfgs.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|